Storage oil breakdown during embryo development of Brassica napus (L.).

نویسندگان

  • Tansy Y P Chia
  • Marilyn J Pike
  • Stephen Rawsthorne
چکیده

In this study it is shown that at least 10% of the major storage product of developing embryos of Brassica napus (L.), triacylglycerol, is lost during the desiccation phase of seed development. The metabolism of this lipid was studied by measurements of the fate of label from [1-(14)C]decanoate supplied to isolated embryos, and by measurements of the activities of enzymes of fatty acid catabolism. Measurements on desiccating embryos have been compared with those made on embryos during lipid accumulation and on germinating seedlings. Enzymes of beta-oxidation and the glyoxylate cycle, and phosphoenolpyruvate carboxykinase were present in embryos during oil accumulation, and increased in activity and abundance as the seeds matured and became desiccated. Although the activities were less than those measured during germination, they were at least comparable to the in vivo rate of fatty acid synthesis in the embryo during development. The pattern of labelling, following metabolism of decanoate by isolated embryos, indicated a much greater involvement of the glyoxylate cycle during desiccation than earlier in oil accumulation, and showed that much of the (14)C-label from decanoate was released as CO(2) at both stages. Sucrose was not a product of decanoate metabolism during embryo development, and therefore lipid degradation was not associated with net gluconeogenic activity. These observations are discussed in the context of seed development, oil yield, and the synthesis of novel fatty acids in plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fatty acid breakdown in developing embryos of Brassica napus L.

Developing Brassica napus embryos are primarily concerned with the accumulation of storage products, namely oil, starch and protein. The presence of fatty acid catabolic pathways in the background of this biosynthetic activity was investigated. Enzymes involved in the process of lipid mobilization, such as malate synthase and isocitrate lyase, are detectable towards the late stages of embryo de...

متن کامل

Seed Storage Protein Transcription and mRNA Levels in Brassica napus during Development and in Response to Exogenous Abscisic Acid.

Transcription rates and mRNA levels for Brassica napus seed storage protein families, cruciferin and napin, have been determined in embryos developing in the seed, as well as in embryos cultured with and without abscisic acid. Cruciferin and napin mRNAs are high during the cell expansion phase of embryo development, representing as much as 11 and 8%, respectively, of the total embryo mRNA. Duri...

متن کامل

Oil concentration in canola (Brassica napus L.) as a function of environmental conditions during seed filling period

Oil concentration (OC) in canola (B. napus L.) is determined during seed fillingperiod (SFP), and the variation in OC is greatly related to environmental conditionsduring that period. To determine factors affecting OC in canola, 12 fieldexperiments were conducted at Agricultural Research Station of Gonbad, Iran,during 2000-07. The experiments were carried out under different growingconditions. ...

متن کامل

Glycerol-3-phosphate acyltransferase 4 is essential for the normal development of reproductive organs and the embryo in Brassica napus

The enzyme sn-glycerol-3-phosphate acyltransferase 4 (GPAT4) is involved in the biosynthesis of plant lipid poly-esters. The present study further characterizes the enzymatic activities of three endoplasmic reticulum-bound GPAT4 isoforms of Brassica napus and examines their roles in the development of reproductive organs and the embryo. All three BnGPAT4 isoforms exhibited sn-2 acyltransferase ...

متن کامل

Predictive Modeling of Biomass Component Tradeoffs in Brassica napus Developing Oilseeds Based on in Silico Manipulation of Storage Metabolism1[W][OA]

Seed oil content is a key agronomical trait, while the control of carbon allocation into different seed storage compounds is still poorly understood and hard to manipulate. Using bna572, a large-scale model of cellular metabolism in developing embryos of rapeseed (Brassica napus) oilseeds, we present an in silico approach for the analysis of carbon allocation into seed storage products. Optimal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 56 415  شماره 

صفحات  -

تاریخ انتشار 2005